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The lattice distortion of hcp solid He under pressure is calculated using semiempirical and first-principle
approaches. While three-body forces tend to flatten the lattice at all compressions, the effect of pair forces
changes from the flattening at small compression to elongation at large one. At large compressions, the lattice
distortion due to the triple forces is more than twice as large as those due to pair forces and the lattice is
slightly flattened. First-principles results show that over approximately fivefold compressions higher-order,
many-body forces become important.
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In line with the close-packing principle, rare gases He,
Ne, Ar, Kr, and Xe crystallize into structures having the larg-
est packing coefficient for spherical entities—the hexagonal
close-packed �hcp� and face-centered cubic �fcc� structures.
At low pressures and temperatures 4He crystallizes into the
hcp structure. High-pressure �HP� x-ray diffraction
measurements1,2 have shown that in a wide temperature �up
to 300 K� and pressure �up to 57 GPa� range hcp 4He is
stable. The heavier or classical rare-gas solids �RGS�—Ne,
Ar, Kr, and Xe—crystallize into the fcc structure. HP
diamond-cell studies3–6 have shown that the hcp phase can
be stabilized at high compression in Xe,3,4,6 Kr,4 and Ar,5

with the fcc and hcp phases coexisting over a broad range of
pressures. Contrary to expectations, a HP x-ray diffraction
study of solid Ne at the pressure range up to 208 GPa �Ref.
7� found that the crystal structure of neon remains fcc.

One of the fingerprints of hcp RGS is their lattice-
dynamic properties. Unlike fcc, the hcp structure has optical
branches in the phonon spectrum. The doubly degenerate
Raman-active E2g mode corresponds to a shear out-of-phase
motion of the layers of atoms in the ab plane. There are
low-pressure neutron data up to 0.5 GPa �Ref. 8� and Raman
data up to 1 GPa �Ref. 9� on the E2g phonons in solid He.
The first-principle and semiempirical theoretical data on the
HP behavior of the E2g phonons in solid He �Ref. 10� were
compared with data obtained using the experimental elastic
constant C44 data from Ref. 2. Recently Raman data were
obtained for Ar up to 58 GPa,10 Kr up to 75 GPa,11 and Xe
up to 41 and 135 GPa in Refs. 10 and 12, respectively.

Another distinctive feature of the hcp structure is an
additional degree of freedom associated with the c /a
ratio. A lattice of closed-packed hard spheres has
c /a=�8 /3�1.633 �the ideal hcp structure�. The quantity
�=c /a−�8 /3, the lattice distortion parameter, describes the
deviation of the axial ratio from the ideal value. In the case
of ��0, this distortion involves extension within close-
packed planes, and contraction along the c-axis direction,
and vice versa, for ��0 the lattice is expanded along the c

axis and contracted within close-packed planes. For all hcp
elemental solids except helium, hydrogen, and heavy rare
gases �Ar, Kr, and Xe� under pressure the behavior of � with
pressure and temperature is well established. Typical values
are on the order of 10−2. For solid helium � is an order of
magnitude less.13,14 In this paper we present results of the
first theoretical determination of the pressure dependence of
the lattice distortion parameter � for hcp 4He and 3He. The
calculations were performed using semiempirical and first-
principle approaches which complement each other: the
former works better for low pressures, the latter for high
pressures. The semiempirical calculations were done for the
interatomic potential composed of a two-body and a three-
body part and for the two-body potential.

Experimentally, various measurements of the axial ratio in
solid He were performed. Low-pressure experimental data
are summarized in Table I. The sole attempt to undertake a
systematic study of the pressure dependence of the axial
ratio in solid He was made by Vos et al.13,14 by using an
optical method based on the presence of birefringence in the
hcp phase. They found a small deviation of the c /a ratio
from the ideal value at small pressures and low temperatures.
In these experiments � was about −10−3 at the lowest
density �20.6 cm3 /mol� and decreased in magnitude �about
−6�10−4� at higher densities at �1 kbar �12.5 cm3 /mol�.
Though uncertainties in neutron-diffraction and x-ray studies
were too large to reveal unambiguously changes in c /a with
pressure, experimental data show systematically that c /a is
slightly lower than the ideal value 1.633. X-ray studies of He
at HP gave the value 1.630�0.005.1,2 It is interesting to note
that not counting RGS all hcp elemental crystals except Zn
and Cd have negative �.23

From the theoretical side, only one attempt was made to
analyze the behavior of the lattice distortion parameter in
solid He,24 however the precision of calculations was insuf-
ficient to reach trustworthy results. Additionally, Howard25

calculated the static energy of the hcp �6–12� Lennard-Jones
�LJ� lattice at equilibrium lattice spacing as a function of �
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and found that energy minimum occurs for �=−2.286
�10−4. �Close results were founds for various pair
potentials.26� Stillinger27 extended these calculations to com-
pressed hcp LJ lattices and found that � decreases in magni-
tude with rising compression and changes the sign at the
compression of about 1.86.

The deviation of the axial ratio from the ideal value in the
hcp solids can be attributed ultimately to a lowering of the
band-structure energy through lattice distortion. In the mo-
lecular hcp solids we can explicitly ascribe this effect to the
reduction in the ground-state energy due to lattice distortion.
In the case of solid helium the effect of lattice distortion both
on the static energy and zero-point energy is essential.

Let us use the fact that ����1 and expand the ground-state
energy of the system in powers of � restricting ourselves to
the terms of the second order in �

Egs��� = Egs
0 + b1� + b2�2, �1�

where Egs
0 is the ground-state energy of the ideal hcp lattice,

bi �i=1,2� are the coefficients depending on the parameters
of the interatomic potential and molar volume. Minimizing
Egs��� over �, we obtain

� = − b1/�2b2� . �2�

Thus, to find the ��V� dependence one has to calculate the
quantities b1�V� and b2�V�. In spite of the short-range char-

acter of the interparticle interaction to calculate b1 unam-
biguously one has to take into account contributions from a
large number of shells of neighbors. The reason is that the
contributions of the first two shells to b1 are exactly equal to
zero while the contributions from more distant shells de-
crease rather slowly and tend to alternate in signs. These are
the reasons why � is small. The alternation of the sign of the
effect ceases after taking into account rather long-distance
contributions. To get a reliable result we took into account
contributions from 50 shells of neighbors.

In these calculations we use an interatomic potential Utot,
accounting for pair �Up�, and triple �Utr� interatomic forces
�Utot=Up+Utr�. For the two-body interaction, we have taken
the HFDHE2 Aziz et al.28 potential which was used previ-
ously in our equation of state and Raman calculations.10,29

We also performed calculations using the HFD-B3-FCI1
Aziz30 potential and found that the results for these two pair
potentials practically coincide. The three-body potential in-
cludes the long-range Axilrod-Teller dispersive interaction
and a short-range three-body exchange interaction.29,31–37

The latter was used in a Slater-Kirkwood form
�Bruch-McGee potential38�. The parameters employed for the
three-body terms are given in Ref. 29. We restrict ourselves
to T=0 K with the zero-point energy taken into account us-
ing the Einstein approximation. A small pressure range
��0.1 GPa� where quantum-crystal effects play a decisive
role was excluded from consideration. The equation of state,
Raman frequencies, and elastic shear modulus calculated
previously10,29 within this model are in excellent agreement
with experiment.

The hcp lattice distortion parameter � for 3He and 4He as
a function of molar volume is shown in Fig. 1. The calcula-
tions were performed for the many-body potential Utot and
for the pair potential Up. For both potentials calculations
were performed with and without the zero-point contribu-
tion. The resulting ��V� dependencies are qualitatively dif-
ferent: for the total potential, � is negative in the whole range
of molar volumes studied and increases in magnitude mono-
tonically with decreasing V. At 2.5 cm3 /mole �� tenfold
compression, P�60 GPa� ��−0.001. For the pair potential
the ��V� dependence is nonmonotonic in qualitative agree-
ment with results of Stillinger27 for the LJ potential. For
large molar volumes where the triple forces are negligible,
the resulting � is very close to that obtained using the total
potential. But under increasing compression, the curves di-
verge. The curve for the pair potential after passing through a
minimum changes sign at V�5 cm3 /mol and increases
monotonically with decreasing V.

A comparison of the two curves shows that at large com-
pressions, pair and triple forces exert opposing effects on the
lattice distortion. The former acts to elongate the lattice
while the latter flattens it. The lattice distortion is determined
by the competition of three-body and two-body forces, and
we see that the action of the former dominates at high com-
pressions. The difference between the two curves gives an
estimate of the net contribution of the three-body forces to
the lattice distortion. At high compressions, the lattice distor-
tions due to the triple forces are more than twice as large as
those due to pair forces and have the opposite sign. A simple
qualitative explanation of the obtained curves probably does

TABLE I. The axial ratio c /a for 4He.

V
�cm3 /mol� c /a � Ref.

Birefringence

20.6 1.6320 −0.001�0.0005 13

18.8 1.6323 −0.0007�0.0005 14

17.0 1.6324 −0.0006�0.0005 14

12.5 1.6324 −0.0006�0.0005 14

Neutron diffraction

21.1 1.638 +0.005�0.016 15

20.32 1.6290 −0.0040�0.0061 16

18.51 1.612 −0.021�0.004 17

17.41 1.6294 −0.0036�0.016 16

16.02 1.6292 −0.004�0.002 18

15.13 1.6310 −0.0020�0.0035 16

11.61 1.630 −0.003�0.002 8

9.41 1.632 −0.001�0.002 8

X ray

21.3�1� 1.638 +0.005�0.005 19

20.66 1.628 −0.005�0.008 20

17.4 1.627 −0.006 21

12.1 1.6310a −0.002�0.0005 22

aAn average value for eight samples of 3He with V in the range
11.6–12.8 cm3 /mol and two samples of 4He with
V=12.1 cm3 /mol.
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not exist: even for the pair potential it is impossible to at-
tribute a certain sign of � to the repulsive or attractive part of
the interatomic interaction since the sign of the effect varies
for the contributions from different shells.

The effect of zero-point vibrations decreases with rising
compression �Fig. 1�. But at low compressions the lattice
becomes unstable with respect to flattening both for the
many-body and pair potentials if the zero-point energy is
disregarded. The isotope effect in the lattice distortion pa-
rameter is due to the difference in contributions of the zero-
point energy for the two isotopes. The calculated effect is
small �Fig. 1� which is in agreement with experiments.17,22,39

To investigate the contribution of higher-order many-body
forces to the lattice distortion we also carried out density-
functional theory �DFT� calculations. Our calculations have
been done using the full-potential linear muffin-tin orbital
method40 within the generalized gradient approximation
�GGA� for T=0 K, disregarding zero-point oscillations. Al-
though the GGA is not optimal for handling van der Waals
interactions,41 it is accurate for high compressions, where the
repulsive forces dominate. The first-principles results �Fig. 1,
inset� are in good agreement with our semiempirical many-
body potential calculations without zero-point oscillations up
to approximately fivefold compressions ��4 cm3 /mol�. At
higher compressions the magnitude of � obtained in DFT

calculations increases far more rapidly than that following
from the semiempirical calculations. Comparing the results
of these two approaches, we conclude that at higher com-
pressions higher-order, many-body forces become important.
It should be noted that many-body interactions are important
for many physical properties of molecular solids: the ob-
served stability of the fcc RGS, stacking-fault energy, elastic
constants,42 equation of state,29,31,34,36,37 and vacancy-
formation energy.43,44 However, these properties can be mod-
eled with effective two-body potentials. On the other hand,
for the hcp lattice distortion the role of the many-body terms
is crucial at high compressions. The pressure behavior of the
hcp lattice distortion parameter is qualitatively different for
the many-body and pair potentials, and thus cannot be de-
scribed by the effective pair potentials. This sensitivity of the
lattice distortion parameter to the many-body component of
the intermolecular potential makes it a unique thermody-
namic characteristic which thus can be used as a probe of
many-body forces.45

Finally we address the issue of feasibility of experimental
studies of the lattice distortion of solid He under pressure.
The experimental data from Table I which fall in the range of
molar volumes corresponding to the outlined theoretical ap-
proach are shown in Fig. 1. Though the large scatter of the
experimental points does not permit to reveal a certain pres-
sure dependence, experimental and theoretical data for the
many-body potential have the same order of magnitude and
the same sign. The method of an internal standard developed
by Krupskii et al.46 which made it possible to significantly
increase the precision of their x-ray measurements47 of the
c /a ratio for solid parahydrogen at zero pressure could be
use in x-ray and neutron-diffraction measurements under
pressure.

In conclusion, we present results of theoretical calcula-
tions of the lattice distortion parameter � for solid He. The
��V� dependencies calculated for the total �two plus three-
body� and for pair intermolecular potentials are qualitatively
different. Three-body forces flatten the lattice while pair
forces at large compressions tend to elongate it with the ac-
tion of the former being more than twice as large. So, the
resulting lattice distortion parameter � in accordance with all
the set of experimental data is negative and the lattice is
slightly flattened. Up to approximately fivefold compres-
sions, the results based on the many-body potential agree
well with the first-principles results. At larger compressions
higher-order many-body forces become important. Thus, we
have shown that the lattice distortion parameter is a unique
characteristic which is very sensitive to the many-body com-
ponent of the intermolecular potential and can therefore be
used as a probe of the many-body forces.

We thank Ralph Simmons for a very useful correspon-
dence and Anatolii Prokhvatilov and Nikolai Galtsov for
valuable discussions.
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FIG. 1. Lattice distortion parameter � for hcp He as a function
of volume calculated for the semiempirical total and pair potentials
with �solid curves—4He, dot dash—3He� and without �dashed
curves�, respectively, zero-point oscillations. The inset shows the
comparison between the first-principles results �diamonds� and
semiempirical results �solid curve�. Experiment: birefringence data
�open square �Ref. 14��; neutron data �open triangles �Ref. 8��;
x-ray data �open circle �Ref. 22��.
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